

LAKELAND LABORATORIES LIMITED

Manufacturers of Speciality Surfactants

2 Phosphate Esters

Why? Which? Where?

- 1 Amphoterics
- 2 Phosphate Esters
- 3 Imidazolines
- 4 Wax Emulsions

Certificate No.890395

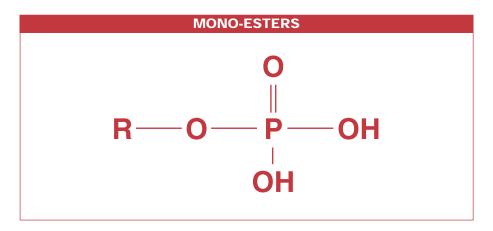
Why Phosphate Esters?

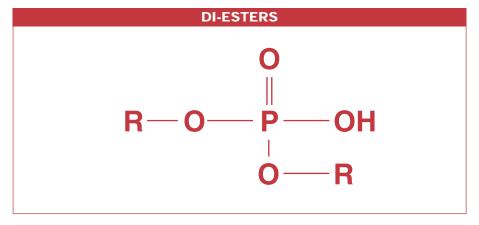
INTRODUCTION

Phosphate esters are 100% active anionic surfactants which are produced as the free acid by either of two chemical routes. Monoesters are produced by the reaction of either alcohols, alcohol ethoxylates or phenyl ethoxylates with polyphosphoric acid, whereas mixtures of mono and diesters are produced by reaction of the same feedstock with phosphorous pentoxide.

Phosphate esters are highly versatile surfactants offering a wide range of properties and applications. The main advantages of phosphate esters over many other surfactants are their alkali stability and solubility. They are excellent hydrotropes and are effective coupling agents which give outstanding wetting, emulsification and detergency. As such they are used widely in emulsion polymerisation, textile auxiliaries, maintenance chemicals, metal finishing, and many other applications.

Phosphate esters have a unique range of properties which are exploited in the production of specialised chemical processing aids for industry. Being stable in high concentrations of alkali, they are especially useful in household and maintenance cleaning products, where high active heavy duty products are required.


Phosphate Esters


Lakeland manufacture phosphate esters based on either alcohols, ethoxylated alcohols or phenyl ethoxylates.

1. Alcohol based

The R-group is derived from a specific alcohol.

- Ethoxylated alcohol based
 The R-group is derived from a specific ethoxylated alcohol.
- Ethoxylated phenol based
 The R-group is derived from a specific ethoxylated phenol.

Phosphate esters are available as the free acid and in most cases as the potassium or sodium salt.

Some of the useful properties are:

- Anionic character. Anionic surfactants are the preferred choice for use in textile auxiliaries.
- 100% active. Economic for shipment, easily incorporated into powder blended products.
- In some cases their emulsifying properties make them ideal for use in oil/water systems.
- Phosphate esters can be neutralised by alkaline earth metals or amines, adding to their versatility.
- Foaming properties of phosphate esters varies, from high to low.
- The variety of wetting, foaming and surface tension reduction properties helps the formulator to develop the required product.

- Very good hydrotroping properties which enable high active products to be produced without the use of additional auxiliary hydrotropes.
- Stability in alkali and builders enabling heavy duty cleaners to be formulated.
- Lubricating properties that enable phosphate esters to be used in metal working fluids and water based lubricants.
- Excellent free rinsing properties leading to smear free surfaces.
- Corrosion inhibition and prevention as well as load carrying properties make phosphate esters ideal for use in metalworking.
- In general low orders of toxicity and relatively low orders of irritation for the potassium salts.

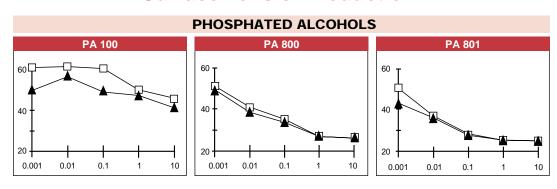
NEDAL INFORMATION

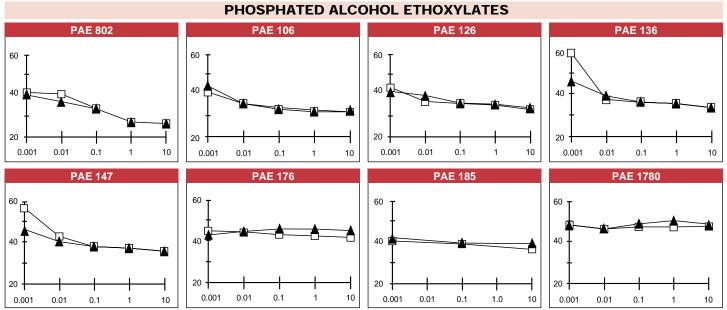
Some phosphate esters exhibit solvent solubility.

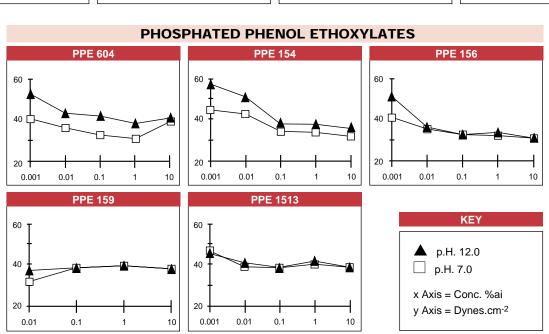
PRODUCT	PROPERTIES	
	APPEARANCE	Acid Value (mgKOH/g) (Typical)
PHOSPHATED	ALCOHOLS	
PA 100	Clear pale brown viscous liquid	950
PA 800	Clear viscous pale brown liquid	360
PA 800K	Clear pale amber liquid	N/A
PA 801	Clear light brown liquid	370
PHOSPHATED	ALCOHOL ETHOXYLATES	
PAE 802	Clear colourless to pale amber liquid	190
PAE 106	Clear viscous pale brown to brown liquid	160
PAE 126	Clear viscous pale brown to brown liquid	190
PAE 136	Clear viscous pale brown to brown liquid	210
PAE 147	Homogeneous viscous pale yellow liquid	220
PAE 176	Yellow viscous liquid clear at 40°C	150
PAE 185	Amber paste clear liquid at 40°C	150
PAE 1780	Light brown solid	30
PHOSPHATED	PHENOL ETHOXYLATES	
PPE 604	Clear viscous amber liquid	320
PPE 604K	Clear colourless to pale amber liquid	N/A
PPE 154	Clear viscous amber to brown liquid	240
PPE 156	Clear viscous amber to light brown liquid	90
PPE 159	Clear viscous amber to light brown liquid	100
PPE 1513	Clear viscous amber liquid	230

GENERAL INFORMATION				
pH (1%) (Typical)	R	MOLES EO (Nominal)	MONO/DI- ESTER RATIO (Typical)	% ACTIVE (Nominal)
0.5	CH ₃	0	40 : 1	100
1.3	C ₈ H ₁₇	0	1:1	100
9 - 10 neat	C ₈ H ₁₇	0	1:1	43
1.3	C ₈ H ₁₇	0	1:1	100
1.5	C ₈ H ₁₇	2	1:1	100
1.0	C ₁₀ H ₂₁	6	3:2	100
1.0	C ₁₂ H ₂₅	6	3:2	100
1.0	C ₁₃ H ₂₇	6	3:2	100
1.2	C ₁₄ H ₂₉	7	12:1	100
2.5	C ₁₇ H ₃₅	6	5.5 : 4.5	100
2.5	C ₁₈ H ₃₅	5	5.5 : 4.5	100
2.8	C ₁₈ H ₃₅	80	2:1	100
1.0	C ₆ H ₅	4	40 : 1	100
9 - 10 neat	C ₆ H ₅	4	40 : 1	65
1.0	C ₆ H ₄ -C ₉ H ₁₉	4	40 : 1	80
1.5	C ₆ H ₄ -C ₉ H ₁₉	6	2:3	100
1.5	C ₆ H ₄ -C ₉ H ₁₉	9	3:2	100
2.0	C ₆ H ₄ -C ₉ H ₁₉	13	48 : 1	100

Which Phosphate Ester?

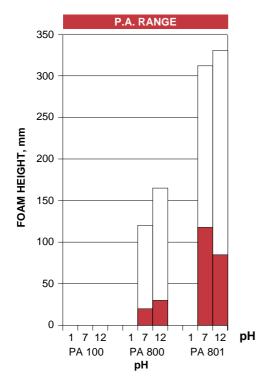

The case has been made "WHY" phosphate esters are used. The problem for the formulator then becomes - "WHICH PHOSPHATE

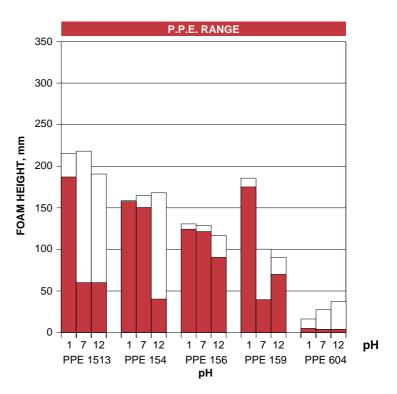

- Surface tension reduction Solubilisation
- Wetting properties Foam height/stability

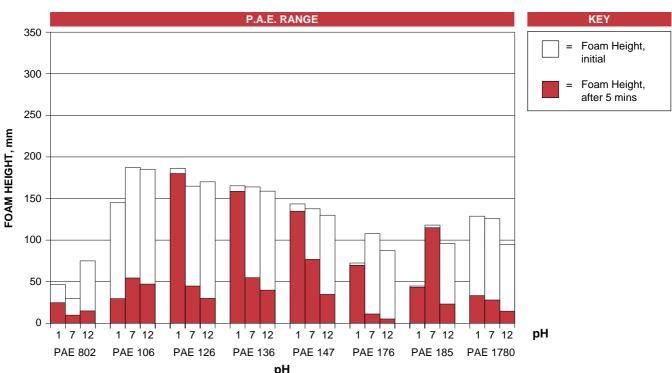

ESTER"? A series of comparative tests have been carried out:

The detailed results that follow are designed to help the formulator decide which phosphate ester best suits the application.

Surface Tension Reduction







Foaming Properties

Ross Miles Foam Heights, ASTM D1173, 0.1% active solutions performed at pH 1, 7 and 12.

N.B. It should be noted that some phosphate esters are prone to hydrolysis in strong mineral acids over a long period of time.

Solubilisation Properties

The following table is designed to show the formulator the effectiveness of each phosphate ester as a solubiliser in three different systems. The solubilisation property is illustrated by the cloud point in °C for each system.

PHOSPHATE ESTER	FORMULATION 1	FORMULATION 2	FORMULATION 3
	5g Alcohol Ethoxylate [®] 10g TKPP [®] 2g Phos Ester [®] 83g Water	5g Alcohol Ethoxylate [®] 5g STPP [®] 5g METSO [®] 3g Phos Ester [®] 82g Water	5g Phenol Ethoxylate [®] 10g TKPP [®] 5g STPP [®] 4g Phos Ester [®] 76g Water
PHOSPHATED ALCOHOLS			
PA 100	42°C	Not Stable	20°C
PA 800	77.5°C	33.5°C	76°C
PA 801	82°C	51.5°C	87°C
PHOSPHATED ALCOHOL ETH	IOXYLATES		
PAE 802	54°C	44.5°C	22°C
PAE 106	>100°C	66°C	48°C
PAE 126	89°C	86°C	69°C
PAE 136	90°C	82°C	82°C
PAE 147	78.5°C	72°C	>100°C
PAE 176	81°C	90°C	>100°C
PAE 185	70°C	56°C	>100°C
PAE 1780	51.5°C	Not Stable	Not Stable
PHOSPHATED PHENOL ETHO	XYLATES	•	·
PPE 1513	63.5°C	54°C	66°C
PPE 154	88.5°C	>100°C	>100°C
PPE 156	49°C	36°C	Not Stable
PPE 159	77°C	68.5°C	90°C
PPE 604	60°C	67°C	80.5°C
• = Alcohol Ethoxylate (C13-15 + 9EO)• = Tetrapotassium Pyrophosphate (50%)• = Phosphate Ester• = Sodium Metasilicate 5H2O• = Sodium Tripolyphosphate• = Nonyl Phenol + 9 E.O.			

Wetting Properties

Under testing parameters of ASTM D2281, Skein test, the following phosphate esters all produced wetting times of under 4 minutes. The following table shows actual times in seconds.

PRODUCT	RESULTS (Seconds)					
	1 ¹ pH 1	% Active Solution	on pH 12	0.1% Act pH 1	ive Solution pH 7	pH 12
PA 800	Insoluble	1	1	Insoluble	10	16
PA 801	Insoluble	1	1	Insoluble	7	10
PAE 802	0	0	0	17	9	10
PAE 106	1	1	1	20	14	22
PAE 126	1	6	15	23	16	46
PAE 136	1	8	14	18	12	21
PAE 147	4	14	18	14	16	30
PAE 176	83	74	57	50	67	89
PAE 185	22	59	141	184	225	125
PPE 1513	32	27	95	40	38	90
PPE 154	1	16	17	11	17	20
PPE 156	1	1	11	10	10	11
PPE 159	15	20	24	40	30	30

Solubility

The table below is a rough guide to the solubility of Lakeland Phosphate Esters in three different types of media; aqueous, alkaline and a hydrophobic solvent.

PRODUCT MEDIUM			
	WATER	NaOH (10-30%)	WHITE SPIRIT
PA 100	Infinitely soluble	Soluble	Insoluble
PA 800	Insoluble	Insoluble	Soluble
PA 801	Forms instable dispersions	Insoluble	Soluble
PAE 802	Dispersable	Soluble at 10 - 20%	Soluble
PAE 106	Soluble	Soluble at 10 - 20%	Soluble
PAE 126	Soluble	Soluble	Soluble
PAE 136	Soluble hazy solution obtained	Soluble	Soluble
PAE 147	Soluble	Soluble	Soluble
PAE 176	Emulsion obtained	Soluble at low concentrations	Soluble
PAE 185	Emulsion obtained	Dispersable at low concentrations	Soluble
PAE 1780	Soluble	Insoluble	Insoluble
PPE 154	Emulsion obtained	Soluble	Soluble
PPE 156	Disperses	Soluble in 10% NaOH	Soluble
PPE 159	Soluble	Soluble in 10% NaOH	Disperses
PPE 1513	Soluble	Soluble in 10% NaOH	Insoluble
PPE 604	Soluble	Soluble	Virtually insoluble

Corrosion Inhibition

Phosphate esters exhibit good corrosion inhibition properties either as the free acid or as the metal/amine salt.

The triethanolamine salt of phosphate esters give optimum corrosion protection in both water and oil-based systems.

Anti-Wear Lubricant Additives

Phosphate esters have useful properties which enable them to be formulated into cutting and grinding fluids as anti-wear and anti-corrosive additives. Phosphate esters are also used in water-based hydraulic fluids as a lubricant to decrease pump wear and inhibit corrosion. They are also used in the manufacture of greases, drawing compounds, chain belt lubricants and gear oils.

Phosphate Esters General Information

PRODUCT	CHEMICAL	S.G.	PACK SIZE/ WEIGHTS	VISCOSITY	CAS/	DATA
PA 100	NAME Methyl phosphate	20°C 1.55 typical	250 kgs	(cPs/20°C) 350 typical	CAS Number: 812-00-0 EINECS Number: 212-379-1	1500
PA 800	2-ethylhexyl phosphate	1.20 typical	200 kgs	200 typical	CAS Number: 12645-31-7 EINECS Number: 235-741-0	1600
PA 800K	2-ethylhexyl phosphate salt	1.20 typical	200 kgs	200 typical	CAS Number: 68550-93-6 EINECS Number: 271-355-9	1601
PA 801	n-octyl phosphate	1.20 typical	200 kgs	200 typical	CAS Number: 3115-39-7 Polymer	1602
PAE 802	Poly(oxy-1,2-ethanediol)-hydro-hydroxy, mono C ₈ branched alkyl ether, phosphate	1.10 typical	200 kgs	300 typical	CAS Number: 68909-65-9 Polymer	1710
PAE 106	Poly(oxy-1,2-ethanediol)-hydro-hydroxy, mono C ₁₀ branched alkyl ether, phosphate	1.10 typical	200 kgs	3000 typical	CAS Number: 68909-65-9 Polymer	1800
PAE 126	Poly(oxy-1,2-ethanediol)-hydro-hydroxy, mono C ₁₂ branched alkyl ether, phosphate	1.10 typical	200 kgs	3000 typical	CAS Number: 68909-65-9 Polymer	1900
PAE 136	Poly(oxy-1,2-ethanediol)-hydro-hydroxy, mono C ₁₃ branched alkyl ether, phosphate	1.10 typical	200 kgs	3000 typical	CAS Number: 68909-65-9 Polymer	2000
PAE 147	Poly(oxy-1,2-ethanediol)-hydro-hydroxy, mono C ₁₄ branched alkyl ether, phosphate	1.10 typical	200 kgs	3000 typical	CAS Number: 68909-65-9 Polymer	2100
PAE 176	Poly(oxy-1,2-ethanediol)-hydro-hydroxy, mono C ₈ to C ₂₂ branched alkyl ether, phosphate	1.05 typical	200 kgs	20000 typical	CAS Number: 68909-65-9 Polymer	2105
PAE 185	Poly(oxy-1,2-ethanediol)-hydro-hydroxy, mono C ₁₈ branched alkyl ether, phosphate	1.05 typical	200 kgs	2000 typical	CAS Number: 68909-65-9 Polymer	2110
PAE 1780	Poly(oxy-1,2-ethanediol)-hydro-hydroxy, mono C ₁₇ branched alkyl ether, phosphate	1.05 typical	200 kgs	Solid	CAS Number: 39464-69-2 Polymer	2107
PPE 604	Poly(oxy-1,2-ethanediol)-phenyl-hydroxy-phosphate	1.25 typical	250 kgs	15000 typical	CAS Number: 39464-70-5 Polymer	2500
PPE 604K	Poly(oxy-1,2-ethanediol), α– phenyl- σ–hydroxy- phosphate potassium salt	1.25 typical	200 kgs	600 typical	CAS Number: 39464-70-5 Polymer	2550
PPE 154	Poly(oxy-1,2-ethanediol)-dinonylphenyl-hydroxy phosphate	1.10 typical	200 kgs	2000 typical	CAS Number: 68909-65-9 Polymer	2295
PPE 156	Poly(oxy-1,2-ethanediol)-dinonylphenyl-hydroxy phosphate	1.10 typical	200 kgs	2000 typical	CAS Number: 39464-64-7 Polymer	2300
PPE 159	Poly(oxy-1,2-ethanediol)-dinonylphenyl-hydroxy phosphate	1.10 typical	200 kgs	2000 typical	CAS Number: 39464-64-7 Polymer	2400
PPE 1513	Poly(oxy-1,2-ethanediol)-dinonylphenyl-hydroxy phosphate	1.10 typical	200 kgs	40000 typical	CAS Number: 39464-64-7 Polymer	2600

Where to Use Phosphate Esters?

We now have the answers to WHY and WHICH Phosphate Ester. The following examples of WHERE Phosphate Esters are often applied should give the formulator a complete picture of the flexibility of these types of surfactants.

Hard Surface Cleaners

Due to their alkali tolerance, phosphate esters have specific uses in heavy duty alkaline cleaners. As well as having excellent detergent properties, phosphate esters also possess hydrotroping properties which assist in the formulation of high active alkaline cleaners, oven cleaners and floor cleaners/strippers.

Laundry Detergents

Phosphate esters can be used in spray dried, powder blended and liquid laundry detergents as low foaming detergent/hydrotropes. High active detergents with outstanding cleaning properties can be prepared by combining Lakeland PPE604 with Lakeland AMA LF40 or AMA LF70 salt free amphoteric surfactants. In liquid products, extra alkali is required to neutralise phosphate esters.

Textiles and Leather

Phosphate esters are the preferred surfactant type for textile and leather processing because of their anionic, wetting, low foaming, alkali tolerance and building/hydrotropic properties. Lakeland PA800 and PAE802 are widely used as wetting agents with low foaming properties. The amine salts of phosphate esters are used as emulsifiers in solvent scouring systems. Lakeland PPE159 is used as a levelling agent in the direct dying of cotton. PPE604 is used in jet dying machines to pre-scour and remove lubricant from knitted polyester. PAE176 is used as a component in leather processing chemicals.

Traffic Film Removal

Small quantities of Lakeland PPE159 combined with Lakeland amphoterics improve free rinsing properties of traffic film remover. This is particularly important in hard water areas.

Dish and Glass Rinsing

Phosphate esters such as PPE 604K are widely used in combination with EO/PO copolymers in the manufacture of rinse aids for automated dish and glass washing systems. The pH of the rinse aid is made sufficiently acidic with citric or phosphoric acid to neutralise any residual alkali from the cleaning cycle. As many biodegradable EO/PO copolymers have low cloud points and poor solubility, a low foaming hydrotroping phosphate ester such as PPE604K can be used to raise the cloud point to 50°C. This ensures that the rinse aid does not phase separate if the temperature rises above the cloud point of the EO/PO copolymer.

Agrochemical Additives

Many agricultural adjuncts such as herbicides are required in water solution for application to foliage. Phosphate esters are ideal for emulsification/solubilisation of additives into water together with good wetting to ensure optimum spreading onto a leaf's surface.

Paper De-inking

Phosphate esters are widely used in the de-inking of paper. As the paper being treated varies, the broad range of foaming properties of Lakeland phosphate esters, together with their excellent wetting and emulsification properties, make them ideally suited for this application.

Oilfield Chemicals

Phosphate esters possess outstanding load carrying and corrosion inhibition properties which makes them ideal for oil drilling and transport applications. Phosphate esters are often used as amine/amido-amine salts to enhance their corrosion inhibition properties. PAE136 in its amine neutralised form is widely used in oilfield applications.

Cutting and Grinding Fluids

The amine salts of phosphate esters have been found to have excellent anti-wear properties due to their lubricity and anti-corrosive properties. These twin properties mean low foaming phosphate esters can be used in water-based cutting and grinding fluids. Lakeland PAE185 is recommended for these purposes.

Acid Cleaning

Compared to neutral detergents acid based cleansers have greatly enhanced dirt removing properties. Phosphoric acid is the preferred acid for metal cleaning as it is less reactive than other mineral acids. Additional protection is obtained by combining it with Lakeland PA 100; mixtures of PA100 and phosphoric acid shows vastly reduced corrosion effects on aluminium and steel. Stainless steel cleaning formulations give much brighter finishes.

The use of Lakeland PA 100 allows the formulator to produce safer acid cleaners both in terms of toxicity and metal attack, without losing detergency. Lakeland PA 100 is less than one tenth as aggressive and one third as toxic as phosphoric acid. It is compatible with surfactants, particularly salt free amphoterics such as Lakeland AMA and AMA LF 40. Cleaning formulations can be produced which are safe on metals and painted surfaces.

Phosphate ester based acid cleansers are particularly useful for aluminium, stainless steel, and are ideal for cleaning trains and trams where the removal of iron oxide, combined with oil, grease and diesel smut is beyond the capability of neutral cleaners. Light duty cleaners, which can be perfumed, are used to clean kitchens, bathrooms and toilets containing metal fittings and ceramics, where lime scale produces unsightly scale. It has also been found that the addition of Lakeland PA 100 to traditional acetic acid based cleaners retards the peeling of chrome plated copper and brass bathroom fittings.

Emulsion Polymerisation

Phosphate alcohol and phenol ethoxylates like Lakeland PAE 136 and PPE 159 are used in emulsion polymerisation. However, a wide range of ethoxylates can be phosphated giving the formulator greater flexibility to produce polymers with the desired characteristics. Further, by varying the mono to di-ester ratio the HLB value can be tuned to give optimum performance.

Miscellaneous

Due to the outstanding properties of phosphate esters, they are used in numerous specialised applications. These include fountain solutions used in lithographic printing, fuel oil/explosive emulsions used in quarrying and open cast mining. Other specialised applications are in dry cleaning "soaps", spin finishes (as an antistatic agent) and processing aids for improving the flow properties of powders.

Formulary

FORMULATION IDEAS

Detailed below are formulation ideas for a variety of products. These are suggestions for the formulator to consider before starting his work. The formulator will have his own skills and experience to add to the finished product.

VEHICLE CLEANING PRODUCTS

1. TRAFFIC FILM REMOVER

- 10% Lakeland AMA
- 2% Alcohol Ethoxylate (C₉-C₁₁, 6 Moles EO)
- 2% Lakeland PAE 136
- 17% NTA Solution (38%)
- 5% Sodium Metasilicate
- 1% NaOH
 - Balance water.

2. CAUSTIC FREE TRAFFIC FILM REMOVER

- 3% Lakeland PPE159
- 1.8% Triethanolamine
- 20% NTA Solution (38%)
- 5% Alcohol Ethoxylate (C₉-C₁₁, 6 Moles EO)
- 10% Lakeland AMA Balance water.

3. CAR RINSE HYDROPHOBE CONCENTRATE

- 5% Lakeland PA100
- 15% Lakeland Imidazoline 18DA
- 5% Lakeland AMA LF40 Balance water.

GENERAL CLEANING PRODUCTS

4. HARD SURFACE CLEANER

- 8% Lakeland AMA
- 8% Alkylbenzene Sulphonate (25%)
- 15% Tetrapotassium
 - Pyrophosphate (50%)
- 2% Lakeland PAE136
- 3% Sodium Metasilicate
- 5% Butyl Oxitol Balance water.

5. HEAVY DUTY ALKALINE CLEANER

- 10% Sodium Metasilicate
- 5% Sodium Hydroxide
- 5% NTA Solution (38%)
- 12% Lakeland AMA
- 3% Lakeland PAE136 Balance water.

6. LOW FOAM CARPET CLEANER

- 4% Sodium Metasilicate
- 6% Sodium Tripolyphosphate
- 2% NTA Solution (38%)
- 3% Lakeland PAE802
- 6% Lakeland AMA LF40
- 4% Estasol™
 - Balance water.

7. LOW FOAM CARPET CLEANER HEAVY DUTY

- 10% Sodium Metasilicate
- 10.5% NTA Solution (38%)
- 12% Butyl Oxitol
- 4% Isopropanol
- 10% Lakeland AMA LF40
- 3% Lakeland PAE802 Balance water.

8. ALUMINIUM/STAINLESS STEEL CLEANER

- 10% Lakeland PA100
- 5% Lakeland AMA LF40
- 2% Alcohol Ethoxylate (C₁₃-15, 9 Moles EO)
- 5% Butyl Oxitol Balance water.

9. ALUMINIUM CLEANER (ANODISED)

- 10% Lakeland PA100
- 1% Alcohol Ethoxylate (C₁₃₋₁₅, 9 Moles EO) Balance water.

10. AUTOMATIC DISHWASHING LIQUID

- 5% Dequest 3000 S (blend of Polyphosphonic Acids -40% active)
- 5% Sodium Hydroxide
- 16% Sodium Silicate (50%)
- 2% Lakeland PPE604K or PAE802
- 3% Lakeland AMA LF40 Balance water.

11. RINSE AID FOR AUTOMATIC DISHWASHER

- 11% Synperonic LFRA290
- 3% Synperonic LFRA260
- 5% Citric Acid
- 5% Isopropanol
- 2.5% Lakland PPE604K
- 73.5% Water.

12. LOW FOAM FLOOR CLEANER / WAX **STRIPPER**

- 10% Tetrapostasium
 - Pyrophosphate (50%)
- 5% Sodium Tripolyphosphate
- 3% Sodium Metasilicate
- 6% Lakeland PPE604K
- 1% Low Foam Alkoxylate Balance water.

13. ACIDIC BIOCIDAL BATHROOM CLEANER

- 4% Lonzabac 12.30 (Teritary Alkylamine)
- 2% Bardac 22 (50%) (Didecyldimethylammonium Chloride)
- 10% Phosphoric Acid (85%)
- 3% Acetic Acid
- 5% Lakeland PA100 Balance water.

14. LAKELAND HDL (LIQUID LAUNDRY DETERGENT)

- 4.85% Tall Oil Fatty Acid
- 1.07% Potassium Hydroxide (90%)
- 15.6% Lakeland AMA
- 5.5% Lakeland ODA
 - 1% Lakeland PPE 604
- 5.8% NTA Solution (38%) 4% Tetrapotassium
 - Pyrophosphate (50%)
- 9.3% Alcohol Ethoxylate (C₁₃-₁₅9 Mole EO)
- 0.2% Tinopal DMS/X
- (optical brighter)
 - Balance water.

15. BOTTLE WASH DETERGENT

- 20% Sodium Hydroxide
- 4% Sodium Glucoheptonate)
- 1% Low Form Alkoxylate
- 5% Lakeland AMA LF40
- 2% Lakeland PAE802 Balance water.

16. VISCOUS ACID CLEANING (PHOSPHORIC ACID)

- 5% PA 100
- 25% Phosphoric Acid (81%)
- 5% TAB II
- 65% Water
 - Add salt to desired viscosity.

17. VISCOUS ACID CLEANER (HYDROCHLORIC ACID)

- 3% PA 100
- 11% Hydrochloric Acid (conc)
- 5% TAB II
- 65% Water.

The formulations detailed above are suggested as starting points for formulators to add their own ideas and experience in producing their finished product.

They are offered in good faith without warranty.

SYNTHESIS CAPABILITIES

The following represent the synthesis capabilities of Lakeland plant resources;

- Amidation
- Condensation
- Cyclisation
- Dehydration
- Esterification
- Organophosphates
- Quaternisation
- Saponification
- Oxidation
- Others Considered

TOLL MANUFACTURE AND CUSTOM SYNTHESIS

Toll manufacture has always been an important part of Lakeland's business. The strategic location and our proven track record has led to long-lasting working relationships. With on-site engineering facilities our existing plant can be easily modified to customer requirements. All custom and Toll manufacture is carried out under a mutually agreeable secrecy contract.

TECHNICAL SERVICE

Research and development of in-house products extends our expertise into new markets. Toll and custom synthesis is supported by lab-scale work and customer liaison. To supplement the above, and to develop and improve new products, the laboratory facilities include;

- FT Infrared Spectroscopy
- Ultraviolet/Visible Spectroscopy
- Automated Wet Analysis Methods:-Karl Fischer, Chloride Determination, Titroprocessor
- Classical Wet Analysis
- Autoclave Facilities
- Process Development
- Formulation
- HPLC

Small-scale custom laboratory synthesis will be considered. Applications and formulation help is given where possible.

QUALITY

At Lakeland we are fully aware of the necessity for complete customer service in terms of both technical support and quality/flexibility of supply. We are a BS EN ISO 9002 registered company which, in itself, shows our commitment to quality manufacture and customer satisfaction.

AMPHOTERICS

Types	Properties	Industrial Applications
Dipropionates	Solubilisation	Detergents
	Hydrotrope	Maintenance Chemicals
	Highly Alkali Stable	Metal Finishing
	Acid Stable	Lubricants-Bottling/Conveyer
Monopropionate	Salt Free	Vehicle Cleaning
	Corrosion Protection	Toiletries
	Low Foam/High Foam	Textiles
	Biostatic	Oil Fields
	Wetting	Micro Emulsions
Amino Betaines	Emulsification	Agriculture
	Hydrophobe (In Acid)	Institutional
	Free Rinsing	Water Treatment
	Non Toxic	
Amido Betaines	Hard Water Stable	
	Skin Friendly	
	Lubrication	

PHOSPHATE ESTERS

Types	Properties	Industrial Applications
Phosphated	Wetting	Metal Work/Finishing
Alcohols	Solubilisation	Detergents
	Hydrotropes	Maintenance Chemicals
	Highly Alkali Stable	Textiles
	Corrosion Inhibition	Agriculture
Phosphated	Low Foam/High Foam	Oil Fields
Alcohol Ethoxylates	Emulsification	Institutional
	Load Carrying	Water Treatment
	Free Rinsing	Vehicle Cleaning
	Hard Water Stable	
Phosphated		Lubricants
Phenol Ethoxylates		Emulsion Polymerisation

IMIDAZOLINES

Types	Properties	Industrial Applications
Aminoethyl	Corrosion Inhibition	Oil Fields
	Dispersants	Metal Working
	Dewatering	Textiles
	Emulsification	Paper
Hydroxy Ethyl	Rheology Modifiers	Lubricants
	Oil Soluble	Road Making
	Water Soluble (Salts)	Paints
	Adhesion Promoters	Inks
Amido Ethyl	Acid Stable	Agriculture
	Flocculation	Maintenance Chemicals
	Textiles Softeners	Lapping Compounds
Amide Blends	Bitumen Emulsification	Pigment Dispersion

WAX EMULSIONS

Types	Properties	Industrial Applications
Polyethylene	Completely Aqueous	Floor Polish
	Nonionic	Printing Ink (Flexographic)
Oxidised	Cationic	Temporary Protective Coatings
Polyethylene	Small Particle Size	Metal Working
	Highly Stable	Wood Finishes
Polyethylene/	Hard Waxes	Facade Protection
Acrylic Copolymers	Soft Waxes	Textile Finishing
	18-35% Solids	Packaging Films
Montan Ester		Paints (Water Based)
		Fruit Coating
		Anti-Blocking
		Mould Release

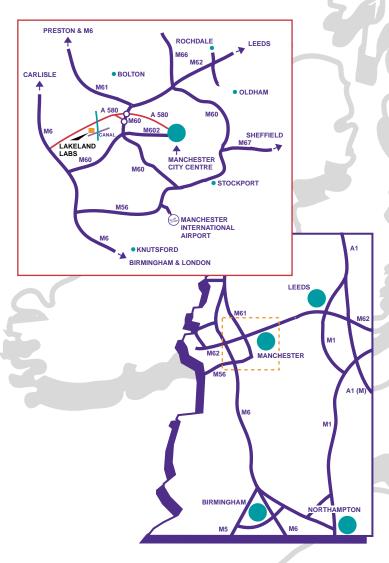
AUSTRALIA

Fernz Speciality Chemicals NSW

AUSTRIA

Jauk GmbH & Co KG Wien

BENELUX


Espachem Bunschoten, HOLLAND Tel: +43 (0) 1 535 12 69 Fax: +43 (0) 1 535 97 55

Tel: +61 (0) 2 9755 9600

Fax: +61 (0) 2 9755 9611

Tel: +31 (0) 33 298 1983 Fax: +31 (0) 33 298 8468

AGENCIES AND DISTRIBUTION

LAKELAND LABORATORIES LIMITED

Peel Lane, Astley Green, Tyldesley, Manchester M29 7FE, England.

Telephone: +44 (0)1942 873555, Fax: +44 (0)1942 884409. Email: mailbox@lakeland-labs.co.uk, paul@lakeland-labs.co.uk

Web Site: www.lakeland-labs.co.uk.

CZECH REPUBLIC

D'Orland Chemicals (UK) Ltd Tel: +43 (0) 1 263 6738 Austria Fax: +43 (0) 1 263 6718

DENMARK

Chr.Krogh, AS Tel: +45 (0) 39 62 98 08 Kobenhaven Fax: +45 (0) 39 62 50 88

FINLAND

MBS-Suomi OY Tel: +358 (0) 9 3508 6555 Vantaa Fax: +358 (0) 9 3508 6550

FRANCE

Groupe Arnaud Tel: +33 (0) 1 44 73 10 00 Paris Fax: +33 (0) 1 44 73 10 49

GERMANY

Polygon Chemie AG Tel: +41 (0) 62 205 50 20 Olten, Switzerland Fax: +41 (0) 62 205 50 30

INDIA (Manufacturer)

Enva Chem (India) Ltd Tel: +91 (0) 22 496 2244 Bombay Fax: +91 (0) 22 496 4499

ISDAF

Paz Lubricants & Chemicals Ltd Tel: +972 (0) 4 835 2095 Haifa Fax: +972 (0) 4 867 0006

ITALY

Chemservice srl Tel: +390 (0) 362 554 807 Milano Fax: +390 (0) 362 554 877

MIDDLE EAST

REDA Industrial Materials LLC Tel: +971 (0) 4 273 776 Dubai Fax: +971 (0) 4 276 301

NEW ZEALAND

Fernz Chemicals (NZ) Ltd Tel: +64 (0) 9 415 7001 Auckland Fax: +64 (0) 9 415 7002

NORWAY

 SvedaKjemi AS
 Tel: +47 (0) 22 88 16 00

 Oslo
 Fax: +47 (0) 22 72 00 52

 Frederikstadt
 Tel: +47 (0) 69 32 30 10

 Fax: +47 (0) 69 32 10 70

PORTUGAL

Horquim Representações Lda Tel: +351 (0) 2 2967 09 82 Maia Fax: +351 (0) 2 2967 32 87

SPAIN

Merck Farma y Quimica, SA Tel: +34 (0) 93 565 55 00 Barcelona Fax: +34 (0) 93 544 02 59

SWEDEN

MB-Sveda AB
Malmo
Fax: +46 (0) 40 35 28 00
Fax: +46 (0) 40 12 51 72

Norrköping
Tel: +46 (0) 11 10 64 20
Fax: +46 (0) 11 10 26 21

Kista
Tel: +46 (0) 8 632 36 00
Fax: +46 (0) 8 752 00 91

Göteborg
Tel: +46 (0) 31 83 80 00

SWITZERLAND

Polygon Chemie AG

Olten

Tel: +41 (0) 62 205 50 20

Fax: +41 (0) 62 205 50 30

Fax: +46 (0) 31 84 39 80

TAIWAN

Keeneyes Industrial Corp Tel: +886 (0) 2 2393 4076 Taipei Fax: +886 (0) 2 2393 4896

THAILAND